On the condition number of the critically-scaled Laguerre Unitary Ensemble
نویسندگان
چکیده
We consider the Laguerre Unitary Ensemble (aka, Wishart Ensemble) of sample covariance matrices A = XX∗, where X is an N × n matrix with iid standard complex normal entries. Under the scaling n = N + b √ 4cNc, c > 0 and N →∞, we show that the rescaled fluctuations of the smallest eigenvalue, largest eigenvalue and condition number of the matrices A are all given by the Tracy–Widom distribution (β = 2). This scaling is motivated by the study of the solution of the equation Ax = b using the conjugate gradient algorithm, in the case that A and b are random: For such a scaling the fluctuations of the halting time for the algorithm are empirically seen to be universal.
منابع مشابه
Painlevé transcendent evaluation of the scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles
The scaled distribution of the smallest eigenvalue in the Laguerre orthogonal and symplectic ensembles is evaluated in terms of a Painlevé V transcendent. This same Painlevé V transcendent is known from the work of Tracy and Widom, where it has been shown to specify the scaled distribution of the smallest eigenvalue in the Laguerre unitary ensemble. The starting point for our calculation is the...
متن کاملApplication of the τ-function theory of Painlevé equations to random matrices
Application of the τ-function theory of Painlevé equations to random matrices: Okamoto has obtained a sequence of τ-functions for the PVI system expressed as a double Wron-skian determinant based on a solution of the Gauss hypergeometric equation. Starting with integral solutions of the Gauss hypergeometric equation, we show that the determinant can be re-expressed as multi-dimensional integral...
متن کاملRandom matrix ensembles with an effective extensive external charge
Recent theoretical studies of chaotic scattering have encounted ensembles of random matrices in which the eigenvalue probability density function contains a one-body factor with an exponent proportional to the number of eigenvalues. Two such ensembles have been encounted: an ensemble of unitary matrices specified by the so-called Poisson kernel, and the Laguerre ensemble of positive definite ma...
متن کاملDifferential equations for deformed Laguerre polynomials
The distribution function for the first eigenvalue spacing in the Laguerre unitary ensemble of finite size may be expressed in terms of a solution of the fifth Painlevé transcendent. The generating function of a certain discontinuous linear statistic of the Laguerre unitary ensemble can similarly be expressed in terms of a solution of the fifth Painlevé equation. The methodology used to derive ...
متن کاملCorrelations for superpositions and decimations of Laguerre and Jacobi orthogonal matrix ensembles with a parameter
A superposition of a matrix ensemble refers to the ensemble constructed from two independent copies of the original, while a decimation refers to the formation of a new ensemble by observing only every second eigenvalue. In the cases of the classical matrix ensembles with orthogonal symmetry, it is known that forming superpositions and decimations gives rise to classical matrix ensembles with u...
متن کامل